永蔚Alex

Nautical Nonsense and Abstract Nonsense

0%

分析導論:微分

這份筆記是關於微分的定義與性質。

可微

定義 1:大O函數 (Big-O Function)

若函數\(k(h)\)滿足 \[ \lim_{|h|\to 0}\frac{|k(h)|}{|h|}=\alpha<\infty \]\(\alpha>0\),則記\(k(h)=O(h)\)

例 1-1

考慮函數\(k(h)=2|h|\),我們有 \[ \lim_{|h|\to 0}\frac{|k(h)|}{|h|}=2<\infty \] 故有\(k(h)=O(h)\)

定義 2:小o函數 (Small-o Function)

若函數\(g(h)\)滿足 \[ \lim_{|h|\to 0}\frac{|g(h)|}{|h|}=0 \] 則記\(g(h)=o(h)\)

例 2-1

對於\(\epsilon>0\),考慮函數\(g(h)=|h|^{1+\epsilon}\)。則 \[ \lim_{|h|\to 0}\frac{|g(h)|}{|h|}=\lim_{|h|\to 0}|h|^\epsilon=0 \] 故有\(g(h)=o(h)\)

定義 3:可微 (Differentiable)

考慮函數\(f:\mathbb{R}\to\mathbb{R}\)。對於\(x=x_0\in\mathbb{R}\),若存在\(A\in\mathbb{R}\)使得 \[ f(x_0+h)=f(x_0)+Ah+o(h) \] 則稱\(f\)\(x=x_0\)可微。

定義 3-1:導數 (Derivative)

我們稱定義3中的\(A\)\(f\)\(x=x_0\)的導數。

註記 3-2:可微的等價定義

考慮函數\(f:\mathbb{R}\to\mathbb{R}\),則\(f\)\(x=x_0\)可微 iff. 極限 \[ \lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h} \] 存在。且\(f\)\(x_0\)的導數即為 \[ f'(x_0)=\frac{df}{dx}(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h} \]

證明:我們分兩個部分證明。
\(\Rightarrow\)」:若有\(f(x_0+h)=f(x_0)+Ah+o(h)\),則 \[ \begin{aligned} \lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}&=\lim_{h\to 0}\left(A+\frac{o(h)}{h}\right)\\ &=A+\lim_{h\to 0}\frac{o(h)}{h}=A \end{aligned} \] 即所求的極限存在且\(A=f'(x_0)\)
\(\Leftarrow\)」:若極限 \[ \lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h} \] 存在,則令該極限為\(A\)。我們有 \[ \begin{aligned} f(x_0+h)&=f(x_0)+\frac{f(x_0+h)-f(x_0)}{h}\cdot h\\ &=f(x_0)+Ah+\left(\frac{f(x_0+h)-f(x_0)}{h}-A\right)\cdot h \end{aligned} \] 我們令 \[ g(h)=\left(\frac{f(x_0+h)-f(x_0)}{h}-A\right)\cdot h \]\[ \begin{aligned} \lim_{h\to 0}\frac{g(h)}{h}&=\lim_{h\to 0}\left(\frac{f(x_0+h)-f(x_0)}{h}-A\right)\\ &=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}-\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}=0 \end{aligned} \] 故有\(g(h)=o(h)\),即有\(f(x_0+h)=f(x_0)+Ah+o(h)\)QED

註記 4

考慮函數\(f:\mathbb{R}\to\mathbb{R}\),若\(f\)\(x_0\)可微,則\(f\)\(x_0\)連續。

證明:若\(f\)不在\(x_0\)連續,則極限 \[ \lim_{h\to 0}f(x_0+h)-f(x_0) \] 不等於零(或可能根本不存在),如此極限 \[ \lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h} \] 就勢必不會存在,這與\(f\)\(x_0\)可微的假設矛盾。故\(f\)應在\(x_0\)連續。QED

鏈鎖律

定理 4:鏈鎖律 (Chain Rule)

給定可微函數\(g,f:\mathbb{R}\to\mathbb{R}\),且\(f\)的定義域包含\(g\)的值域,則 \[ [f(g(x))]'=g'(x)f'(g(x)) \]

證明1:對於\(x=x_0\),我們有 \[ \lim_{h\to 0}\frac{f(g(x_0+h))-f(g(x_0))}{h}=\lim_{h\to 0}\frac{f(g(x_0+h))-f(g(x_0))}{g(x_0+h)-g(x_0)}\times\frac{g(x_0+h)-g(x_0)}{h} \] 由於\(g\)\(x_0\)可微,故由註記4知\(g\)\(x_0\)連續。故 \[ \lim_{h\to 0}\frac{f(g(x_0+h))-f(g(x_0))}{g(x_0+h)-g(x_0)}=\lim_{g(x_0+h)-g(x_0)\to 0}\frac{f(g(x_0+h))-f(g(x_0))}{g(x_0+h)-g(x_0)} \]\(\delta=g(x_0+h)-g(x_0)\),就有 \[ \lim_{g(x_0+h)-g(x_0)\to 0}\frac{f(g(x_0+h))-f(g(x_0))}{g(x_0+h)-g(x_0)}=\lim_{\delta\to 0}\frac{f(g(x_0)+\delta)-f(g(x_0))}{\delta}=f'(g(x_0)) \] 然後又有 \[ \lim_{h\to 0}\frac{g(x_0+h)-g(x_0)}{h}=g'(x_0) \] 故有 \[ [f(g(x_0))]'=f'(g(x_0))g'(x_0) \] QED

證明2: 由於\(f,g\)都在\(x_0\)可微,故 \[ \begin{aligned} f(g(x_0+h))&=f(g(x_0)+(g(x_0+h)-g(x_0)))\\ &=f(g(x_0))+f'(g(x_0))(g(x_0+h)-g(x_0))+o(g(x_0+h)-g(x_0))\\ &=f(g(x_0))+f'(g(x_0))(g'(x_0)h+o(h))+o(g(x_0+h)-g(x_0))\\ &=f(g(x_0))+f'(g(x_0))g'(x_0)h+f'(g(x_0))h+o(g'(x_0)h+o(h)) \end{aligned} \]\(f'(g(x_0))\)是常數,故 \[ f'(g(x_0))o(h)=o(h) \]\[ o(g'(x_0)h+o(h))=o(h) \]\[ f(g(x_0+h))=f(g(x_0))+f'(g(x_0))g'(x_0)h+o(h) \] 意即 \[ [f(g(x_0))]'=f'(g(x_0))g'(x_0) \] QED