這份筆記是關於多變數瑕積分一致收斂性的討論。
單積分的一致收斂性
註記 1
給定連續的\(f(x,y)\),令\(F(x)=\int_0^\infty f(x,y)dy\)。就算對於所有\(x\),\(\int_0^\infty f(x,y)dy\)都存在,\(F(x)\)也不一定會連續。
例 1-1
考慮函數\(f(x,y)=\frac{\sin xy}{y}\),則 \[ F(x)=\left\{ \begin{aligned} \int_0^\infty\frac{\sin z}{z}dz&,x>0\\ 0&,x=0\\ \int_0^{-\infty}\frac{\sin z}{z}dz&,x<0 \end{aligned} \right. \] (見這裡的引理13與推論13-1),則\(F\)顯然在\(x=0\)不連續。
定義 2:一致收斂I (Uniformly Convergence I)
我們說\(F(x)=\int_0^\infty f(x,y)dy\)在區間\(a\leq x\leq b\)上一致收斂,若對於所有\(\epsilon>0\),存在\(A=A(\epsilon)\) s.t. \(\forall B\geq A\)有 \[ \left|\int_B^\infty f(x,y)dy\right|<\epsilon, \forall a\leq x\leq b \]
註記 2-1
若存在\(M\)和\(\alpha>1\)使得 \[ |f(x,y)|\leq\frac{M}{y^\alpha} \] 則積分\(F(x)=\int_0^\infty f(x,y)dy\)一致收斂。(證略)
引理 2-2
若\(F(x)=\int_0^\infty
f(x,y)dy\)一致收斂,則\(F(x)\)連續。
證明:沿用定義2中的符號,有 \[
\begin{aligned}
F(x+h,y)-F(x,y)&=\int_0^\infty[f(x+h,y)-f(x,y)]dy\\
&=\int_0^A[f(x+h,y)-f(x,y)]dy+\int_A^\infty[f(x+h,y)-f(x,y)]dy\\
&\leq\int_0^A[f(x+h,y)-f(x,y)]dy+2\epsilon\\
&\leq A\epsilon+2\epsilon
\end{aligned}
\] 最後一步是因為\(f\)在給定區間中一致連續,故當\(h\)夠小時\(f(x+h,y)-f(x,y)<\epsilon\)。而令\(\epsilon\to 0\),就知\(F\)連續。QED
類似的,考慮在有限的區間中某一點無定義的函數,即存在\(\alpha\) s.t. 當\(y\to\alpha\)時\(f(x,y)\to\infty\),我們也可以定義這個狀況下的一致收斂:
定義 3:一致收斂II (Uniformly Convergence II)
考慮在\((x,\alpha)\)沒有定義的函數\(f\)及\(F(x)=\int_{\alpha^\beta}f(x,y)dy\)。我們說\(F(x)\)在\(a\leq x\leq b\)上一致收斂,若對於所有\(\epsilon>0\),存在\(\delta=\delta(\epsilon)>0\) s.t. 對於所有\(h<\delta\)有 \[ \left|\int_{\alpha}^{\alpha+h}f(x,y)dy\right|<\epsilon \]
引理 3-1
用和引理2-2一樣的論述,可以知道若\(F(x)=\int_{\alpha}^\beta f(x,y)dy\)一致收斂,則\(F(x)\)連續。
註記 3-2
類似註記2-1,若存在\(M\)及\(s<1\)使得 \[ |f(x,y)|\leq\frac{M}{(y-\alpha)^s} \] 則\(F(x)=\int_\alpha^\beta f(x,y)dy\)一致收斂。
多重積分的一致收斂性
註記 4
我們考慮\(\int_a^bdx\int_0^\infty f(x,y)dy\)。一般來說,當\(a=-\infty\), \(b=\infty\)時,\(\int_a^bdx\int_0^\infty f(x,y)dy\)不一定會存在。
例 4-1
對於\(x\in[1,\infty)\),考慮 \[ f(x,y)=\frac{1}{x^2+y^2}, \int_0^\infty f(x,y)dy=\frac{1}{2x} \] 然而\(\int_{-\infty}^\infty\frac{1}{2x}dx\)並不存在。
推論 5
若\(F(x)=\int_0^\infty f(x,y)dy\)在\(x\in[a,b]\)上一致收斂,則 \[ \int_\alpha^\beta dx\int_0^\infty f(x,y)dy=\int_0^\infty dy\int_\alpha^\beta f(x,y)dx \]
證明:沿用定義2的符號,我們有 \[ \int_0^\infty f(x,y)dy=\int_0^A f(x,y)dy+\int_A^\infty f(x,y)dy \] 則 \[ \begin{aligned} \int_\alpha^\beta dx\int_0^\infty f(x,y)dy&=\int_\alpha^\beta dx\int_0^A f(x,y)dy+\int_\alpha^\beta dx\int_A^\infty f(x,y)dy\\ &=\int_0^A dy\int_\alpha^\beta f(x,y)dx+\int_\alpha^\beta dx\int_A^\infty f(x,y)dy \end{aligned} \] (這裡積分可以交換是因為這裡是有限積分,見這裡的定理5)。而令\(A\to\infty\),有 \[ \begin{aligned} &\left|\int_\alpha^\beta dx\int_0^\infty f(x,y)dy-\int_0^A dy\int_\alpha^\beta f(x,y)dx\right|\\ &=\left|\int_\alpha^\beta dx\int_A^\infty f(x,y)dy\right|\\ &<\left|\int_\alpha^\beta\epsilon dx\right|\mbox{ (一致收斂)}\\ &=\epsilon(\beta-\alpha) \end{aligned} \] 讓\(\epsilon\to 0\),即有 \[ \int_\alpha^\beta dx\int_0^\infty f(x,y)dy=\int_0^\infty dy\int_\alpha^\beta f(x,y)dx \] QED
推論 5-1
類似的,對於定義3涉及的第二種瑕積分,也在一致收斂時有 \[ \int_a^b dx\int_\alpha^\beta f(x,y)dy=\int_\alpha^\beta dy\int_a^b f(x,y)dx \]
定理 6
若\(f\)和\(f_x\)都連續,且\(\int_0^\infty f(x,y)dy\)和\(\int_0^\infty f_x(x,y)dy\)都一致收斂。令\(F(x)=\int_0^\infty f(x,y)dy\),則 \[ F'(x)=\int_0^\infty f_x(x,y)dy \]
證明:記\(G(x)=\int_0^\infty f_x(x,y)dy\),則 \[ \begin{aligned} \int_\alpha^\xi G(x)dx&=\int_0^\infty dy\int_\alpha^\xi f_x(x,y)dx\mbox{ (推論5)}\\ &=\int_0^\infty(f(\xi,y)-f(\alpha,y))dy\mbox{ (微積分基本定理)}\\ &=F(\xi)-F(\alpha) \end{aligned} \] 於是\(F(\alpha+h)-F(\alpha)=\int_\alpha^{\alpha+h}G(x)dx\),兩邊除以\(h\),令\(h\to 0\),即有 \[ F'(\alpha)=G(\alpha)=\int_0^\infty f_x(\alpha,y)dy \] QED