這份筆記是關於傅立葉轉換的定義與性質。
傅立葉轉換
回想 1
在一定條件下,我們知道\(f(x)\)會等於其傅立葉級數(見這裡的定理16與定理22),即在\(-\pi\leq x\leq \pi\)上有 \[ f(x)=\sum_{n=-\infty}^\infty\frac{1}{2\pi}\int_{-\pi}^\pi f(t)e^{-in(t-x)}dt \]
註記 2
在接下來的討論中,我們都假設討論的函數\(f\)有以下兩個性質:
1. \(f\)和\(f'\)都連續。
2. \(\int_{-\infty}^\infty|f(x)|dx<\infty\)
(一般來說,當\(f\)的性質沒那麼好的時候,可以找到性質很好的\(\tilde{f}\)使得\(\tilde{f}\)很靠近\(f\)。)
回想 3
由這裡的註記6-1有 \[ \cos[\tau(t-x)]=\frac{1}{2}(e^{i\tau t-i\tau x}+e^{-i\tau t+i\tau x}) \] (這裡\(i=\sqrt{-1}\))
定義 4:傅立葉轉換 (Fourier Transform)
給定函數\(f\),我們定義\(f\)的傅立葉轉換為 \[ g(\tau)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{-i\tau t}dt \]
定義 4-1:反轉傅立葉轉換 (Inverse Fourier Transform)
給定函數\(g\),我們定義\(g\)的反轉傅立葉轉換為 \[ f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty g(\tau)e^{i\tau x}d\tau \]
定義 4-2
我們有時會用\(\mathscr{F}\)代表傅立葉轉換,\(\mathscr{F}^{-1}\)代表反轉傅立葉轉換。
定理 5
我們希望說明當\(f\)和\(f'\)都連續時,\(\mathscr{F}^{-1}(\mathscr{F}f)=f, \mathscr{F}(\mathscr{F}^{-1}g)=g\),即 \[ f\xrightarrow{\mathscr{F}}g\xrightarrow{\mathscr{F}^{-1}}f \] (\(f\)和\(f'\)都連續是函數值等於傅立葉級數值的其中一種條件,見這裡的定理22。)
註記 5-1:定理5的等價形式
令\(g\)是\(f\)的傅立葉轉換,定理5等價於說明 \[ f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty g(\tau)e^{i\tau x}d\tau \] 而使用變數變換,我們有 \[ \begin{aligned} f(x)&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty g(\tau)e^{i\tau x}d\tau\\ &=\frac{1}{\sqrt{2\pi}}\int_0^\infty e^{i\tau x}g(\tau)+e^{-i\tau x}g(-\tau)d\tau\\ &=\frac{1}{\sqrt{2\pi}}\int_0^\infty\left(\frac{e^{i\tau x}}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{-i\tau t}dt+\frac{e^{-i\tau x}}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{i\tau t}dt\right)d\tau\\ &=\frac{1}{2\pi}\int_0^\infty\int_{-\infty}^\infty f(t)(e^{i\tau t-i\tau x}+e^{-i\tau t+i\tau x})dtd\tau\\ &=\frac{1}{\pi}\int_0^\infty\int_{-\infty}^\infty f(t)\cos[\tau(t-x)]dtd\tau \end{aligned} \]
註記 5-2
定理5中的\(g(\tau)\)可能是複值函數,此時\(\overline{g(\tau)}=g(-\tau)\)。
定理5的證明:我們在回想1中變一個魔法,給定在\(-B\leq x\leq B\)上的函數\(f(x)\),令\(y=\frac{\pi x}{B}\),並令\(g(y)=f\left(\frac{By}{\pi}\right)=f(x)\)。於是,有 \[ g(y)=\frac{1}{2\pi}\sum_{n=-\infty}^\infty\int_{-\pi}^\pi g(t)e^{-in(t-y)}dt \] 轉回\(f(x)\),把\(y\)換成\(\frac{\pi x}{B}\),再用變數變換\(t=\frac{\pi s}{B}\),有 \[ \begin{aligned} f(x)&=\frac{1}{2\pi}\sum_{n=-\infty}^\infty\frac{\pi}{B}\int_{-B}^B f(s)e^{-in\frac{\pi}{B}(s-x)}ds\\ &=\frac{1}{2\pi}\sum_{n=-\infty}^\infty\int_{-B}^B f(s)e^{-in\frac{\pi}{B}s}ds\cdot e^{in\frac{\pi}{B}x}\cdot\frac{\pi}{B} \end{aligned} \] 我們令 \[ H(u)=\int_{-B}^B f(s)e^{-ius}ds, G(u)=e^{iux} \] 則 \[ f(x)=\frac{1}{2\pi}\sum_{n=-\infty}^\infty H\left(\frac{n\pi}{B}\right)G\left(\frac{n\pi}{B}\right)\frac{\pi}{B} \] 令\(h=\pi/B\), \(u_n=n\pi/B=nh\),則 \[ f(x)=\frac{1}{2\pi}\sum_{n=-\infty}^\infty H(u_n)G(u_n)h \] 當\(B\to\infty\)時,即有 \[ \begin{aligned} f(x)&\to\frac{1}{2\pi}\int_{-\infty}^\infty H(u)G(u)du\mbox{ (黎曼和)}\\ &=\frac{1}{2\pi}\int_{-\infty}^\infty\left(\int_{-\infty}^\infty f(s)e^{-ius}ds\right)e^{iux}du\\ &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(s)e^{-ius}ds\right)e^{iux}du\\ &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty g(u)e^{iux}du \end{aligned} \] QED
註記 5-3
若\(f\)是偶函數,則其傅立葉轉換\(g\)也是偶函數,且是實值函數。更甚者,有 \[ g(\tau)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)\cos\tau tdt \]
證明:由\(f(t)=f(-t)\)有 \[ g(\tau)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{-i\tau t}dt=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(-t)e^{-i\tau t}dt \] 意即 \[ \begin{aligned} 2g(\tau)&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)[e^{-i\tau t}+e^{i\tau t}]dt\\ &=\frac{2}{\sqrt{2\pi}}f(t)\cos\tau tdt \end{aligned} \] 於是有 \[ \begin{aligned} g(\tau)&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)\cos\tau tdt\\ &=\frac{2}{\sqrt{2\pi}}\int_0^\infty f(t)\cos\tau tdt \end{aligned} \] 很容易可以看出\(g\)是實值偶函數。QED
註記 5-3-1
很容易可以發現我們也會有偶函數的反轉傅立葉轉換 \[ f(x)=\frac{2}{\sqrt{2\pi}}\int_0^\infty g(\tau)\cos\tau xd\tau \]
例 5-4
考慮函數 \[ f(x)=\left\{ \begin{aligned} 1&,|x|<1\\ 0&,\mbox{ otherwise} \end{aligned} \right. \] 其函數圖形如下圖1。

則\(f\)的傅立葉轉換是\(g(\tau)=\frac{2}{\sqrt{2\pi}}\times\frac{\sin\tau}{\tau}\)(計算略)。
我們檢查\(g\)的反轉傅立葉轉換,由上註記5-3-1是 \[
\frac{2}{\pi}\int_0^\infty\cos(\tau x)\frac{\sin\tau}{\tau}d\tau
\] 由積化和差,有 \[
\cos(\tau x)\sin\tau=\frac{1}{2}(\sin(\tau+\tau x)+\sin(\tau-\tau x))
\] 則 \[
\frac{2}{\pi}\int_0^\infty\cos(\tau
x)\frac{\sin\tau}{\tau}d\tau=\lim_{a\to\infty}\frac{1}{\pi}\left(\int_0^a\frac{\sin(\tau+\tau
x)}{\tau}d\tau+\int_0^a\frac{\sin(\tau-\tau x)}{\tau}d\tau\right)
\] 令\(t=\tau(1+x)\),則\(\frac{d\tau}{\tau}=\frac{dt}{t}\),故有
\[
\frac{2}{\pi}\int_0^\infty\cos(\tau
x)\frac{\sin\tau}{\tau}d\tau=\lim_{a\to\infty}\frac{1}{\pi}\left(\int_0^(x+1)a\frac{\sin
t}{t}dt+\int_0^(x-1)a\frac{\sin t}{t}dt\right)\mbox{ (☆)}
\] (後面的積分是令\(t=\tau(1-x)\),細節同上)。我們回想一件事:
回想 5-4-1
我們在這裡的引理13證明過
\[
\int_0^\infty\frac{\sin x}{x}dx=\frac{\pi}{2}
\] 於是:
1. 當\(x=1\)或\(-1\)時,(☆)的值為\(1\),此為\(f\)在\(1\)或\(-1\)的左右極限的平均。
2. 當\(|x|<1\)時,我們有 \[
\mbox{(☆)}=\frac{1}{\pi}\int_0^\infty\frac{\sin
t}{t}dt-\frac{1}{\pi}\int_0^{-\infty}\frac{\sin t}{t}dt=1
\]
3. 當\(|x|>1\)時,我們有 \[
\mbox{(☆)}=\frac{1}{\pi}\int_0^\infty\frac{\sin
t}{t}dt-\frac{1}{\pi}\int_0^{\infty}\frac{\sin t}{t}dt=0
\] (注意第二個積分的積分上界,2.和3.是不一樣的。)
例 5-5:常態分布 (Normal Distribution)
考慮函數\(f(x)=e^{-x^2/2}\),則\(f\)的傅立葉轉換是\(g(\tau)=e^{-\tau^2/2}\),和原函數一樣。
證明:由上註記5-3有 \[ g(\tau)=\frac{2}{\sqrt{2\pi}}\int_0^\infty e^{-\frac{x^2}{2}}\cos(\tau x)dx \] 我們使用分部積分法和這裡的定理6可以發現\(g'(\tau)=-\tau g(\tau)\),即\(\tau g(\tau)+g'(\tau)=0\)。於是,有 \[ \frac{d}{d\tau}\left(g(\tau)e^{\frac{\tau^2}{2}}\right)=0 \] 於是,我們知道\(g(\tau)e^{\tau^2/2}\)是常數函數,即\(g(\tau)=ce^{-\tau^2/2}\)。而由高斯積分(這裡的引理12)我們知道 \[ g(0)=\frac{2}{\sqrt{2\pi}}\int_0^\infty e^{-\frac{x^2}{2}}dx=1=c \] 故有\(g(\tau)=e^{-\tau^2/2}\)。QED
傅立葉轉換的性質
註記 6
假定\(f\)連續且\(\int_{-\infty}^\infty|f(x)|dx<\infty\),且\(g\)為\(f\)的傅立葉轉換,則\(g\)連續。
證明:依定義有 \[ g(\tau)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{-i\tau t}dt \] 故 \[ \begin{aligned} g(\tau-h)-g(\tau)&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)(e^{-it(\tau+h)}-e^{-it\tau})dt\\ &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{-it\tau}(e^{-ith}-1)dt \end{aligned} \] 由於\(\int_{-\infty}^\infty|f(x)|dx<\infty\)且\(e^{-ith}-1\)在\(h\)很小時可以任意小,故整體來說 \[ g(\tau-h)-g(\tau)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t)e^{-it\tau}(e^{-ith}-1)dt \] 可以任意小。於是知\(g\)連續。QED
註記 7:傅立葉轉換的估計 (Estimation of Fourier Transform)
考慮 \[
\begin{aligned}
g_B(\tau)&=\frac{1}{\sqrt{2\pi}}\int_{-B}^B f(t)e^{-i\tau t}dt\\
&=\frac{1}{i\tau\sqrt{2\pi}}\left[-f(B)e^{-iB\tau}+f(-B)e^{iB\tau}+\int_{-B}^B
f'(t)e^{-i\tau t}dt\right]\\
&=\frac{e^{-iB\tau}}{\tau^2\sqrt{2\pi}}[f'(B)+i\tau
f(B)]-\frac{e^{iB\tau}}{\tau^2\sqrt{2\pi}}[f'(-B)+i\tau
f(-B)]-\frac{1}{\tau^2\sqrt{2\pi}}\int_{-B}^B f''(t)e^{-i\tau
t}dt
\end{aligned}
\] (上面用了兩次分部積分)。假設\(\int_{-\infty}^\infty|f(x)|dx<\infty\),則當\(B\to\infty\)時,有\(f(B)=f(-B)=0\)。於是,我們有以下兩種估計:
1. 若有\(\int_{-\infty}^\infty
|f'|<\infty\),則 \[
g(\tau)=\frac{1}{i\tau\sqrt{2\pi}}\int_{-\infty}^\infty
f'(t)e^{-i\tau t}dt=O\left(\frac{1}{\tau}\right)
\]
2. 若又有\(\int_{-\infty}^\infty
|f''|<\infty\),則 \[
g(\tau)=\frac{-1}{\tau^2\sqrt{2\pi}}\int_{-\infty}^\infty
f''(t)e^{-i\tau t}dt=O\left(\frac{1}{\tau^2}\right)
\] (在1.的條件下有\(f'(B)=f'(-B)=0\),當\(B\to\infty\)。)
註記 7-1
上述性質反過來也對,意即若\(g(\tau)=O\left(\frac{1}{\tau^2}\right)\),則\(\int_{-\infty}^\infty |f''|<\infty\)。(證略)
定理 8
令\(g\)是\(f\)的傅立葉轉換。若\(\int_{-\infty}^\infty|f'|<\infty\), \(\int_{-\infty}^\infty|f''|<\infty\),則 \[ \int_{-\infty}^\infty |f(x)|^2dx=\int_{-\infty}^\infty|g(\tau)|^2d\tau \]
證明:考慮 \[
J_{AB}=\int_{-B}^B|f(x)-f_A(x)|^2dx
\] 其中 \[
f_A(x)=\frac{1}{\sqrt{2\pi}}\int_{-A}^A g(\tau)e^{i\tau x}d\tau
\] 我們有 \[
\begin{aligned}
J_{AB}&=\int_{-B}^B\left(f(x)-f_A(x)\right)\left(\overline{f(x)}-\overline{f_A(x)}\right)dx\\
&=\int_{-B}^B\left(f(x)-\overline{f(x)}-f(x)\overline{f_A(x)}-f_A(x)\overline{f(x)}+f_A(x)\overline{f_A(x)}\right)dx
\end{aligned}
\] (這裡的\(\overline{f(x)}\)指的是共軛複數。)而由這裡的定理7有
\[
\begin{aligned}
\int_{-B}^B
f(x)\overline{f_A(x)}dx&=\frac{1}{\sqrt{2\pi}}f(x)\int_{-A}^A\overline{g(\tau)}e^{-ix\tau}d\tau
dx\\
&=\frac{1}{\sqrt{2\pi}}\int_{-A}^A\overline{g(\tau)}\int_{-B}^B
f(x)e^{-ix\tau}dxd\tau\\
&=\int_{-A}^A\overline{g(\tau)}g_B(\tau)d\tau
\end{aligned}
\] 這裡\(g_B(\tau)\)和\(f_A(x)\)的定義類似,是 \[
g_B(\tau)=\frac{1}{\sqrt{2\pi}}\int_{-B}^B f(t)e^{-it\tau}dt
\] 則 \[
\begin{aligned}
J_{AB}&=\int_{-B}^B
|f(x)|^2+|f_A(x)|^2dx-\int_{-A}^A\left[\overline{g(\tau)}g_B(\tau)+g(\tau)\overline{g_B(\tau)}\right]d\tau\mbox{
(★)}
\end{aligned}
\] 又因為\(\int_{-\infty}^\infty|f'|<\infty\),
\(\int_{-\infty}^\infty|f''|<\infty\),故由註記7知\(g(\tau)=O\left(\frac{1}{\tau^2}\right)\)。於是
\[
\int_{-\infty}^\infty|g(\tau)|d\tau=\int_{-1}^1|g(\tau)|d\tau+\int_{outside\;[-1,1]}|g(\tau)|d\tau<\infty
\] (前面因為\(g\)連續(註記6)所以積分有限,後面因為\(g(\tau)=O\left(\frac{1}{\tau^2}\right)\)所以積分有限(這裡的定理5-1)。)於是,由於\(|e^{i\tau x}|=1\),故當\(A\)夠大時,有 \[
\int_{outside\;[-A,A]}g(\tau)e^{i\tau x}d\tau
\] 由定理5我們知道\(f_A\)會收斂到\(f\),而在此我們知道這個收斂是一致收斂。
於是,當\(A\to\infty\)時,有\(J_{AB}=0\),故由(★)有 \[
2\int_{-B}^B|f(x)|^2dx=\int_{-A}^A\left[\overline{g(\tau)}g_B(\tau)+g(\tau)\overline{g_B(\tau)}\right]d\tau\mbox{
(✪)}
\] 又由類似的理由可以知道當\(B\to\infty\)時\(g_B\)一致收斂到\(g\)。故給定\(\epsilon>0\),存在夠大的\(B\)使得 \[
\left|\int_{-\infty}^\infty
g(\tau)(\overline{g_B(\tau)}-\overline{g(\tau)})d\tau\right|\leq\int_{finite\;interval}\left|g(\tau)(\overline{g_B(\tau)}-\overline{g(\tau)})\right|d\tau+\int_{outside}\left|g(\tau)(\overline{g_B(\tau)}-\overline{g(\tau)})\right|d\tau<\epsilon
\] (前面的積分在\(B\)夠大時\(\overline{g_B(\tau)}-\overline{g(\tau)}\to
0\),後面的積分當夠外面時\(\int g\to
0\)。) 於是,當\(B\to\infty\)時, \[
\int_{-\infty}^\infty
g(\tau)\overline{g(\tau)}d\tau=\int_{-\infty}^\infty
g(\tau)\overline{g_B(\tau)}d\tau
\] 同理,有 \[
\int_{-\infty}^\infty
g(\tau)\overline{g(\tau)}d\tau=\int_{-\infty}^\infty
\overline{g(\tau)}g_B(\tau)d\tau
\] 於是,由(✪)有 \[
\int_{-\infty}^\infty |f(x)|^2dx=\int_{-\infty}^\infty|g(\tau)|^2d\tau
\] QED
定義 9:多維傅立葉轉換 (Multi-dimensional Fourier Transform)
我們可以定義多維的傅立葉轉換。給定\(\vec{x}\in\mathbb{R}^n\)及函數\(f:\mathbb{R}^n\to\mathbb{R}\),則定義其傅立葉轉換為 \[ g(\vec{x})=\frac{1}{2\pi}\int_{\mathbb{R}^n}e^{-i\vec{x}\cdot\vec{t}}f(\vec{t})d\vec{t} \] 上面的\(\vec{x}\cdot\vec{t}\)是內積,而前面的常數\(\frac{1}{2\pi}\)會依使用情境不同而有變化。